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ON A CLASS OF ELASTICITY THEORY PROBLEMS 
WITH NON-CLASSICAL BOUNDARY CONDITIONS* 

V.A. MISYURA 

A contact problem of interaction between a massive body containing a 
cavity and elastic shell reinforcements of these cavities is considered. 
It is replaced by some other just for a massive body with non-classical 
boundary conditions on the cavity boundaries that asymptotically 
describe the interaction in the original contact problem exactly. Error 
estimates are constructed for such a replacement in the norm L,. 

1. Formulation of the probtem. Let a physically linear elastic body occupying a domain 
V, C Ra in the non-deformed state, contain a cavity V. The latter is reinforced by a shell 
of thickness h whose external facial surface coincides with a~. The domain that the shell 
occupies is denoted by V,. We assume the reinforcement and the massive body to be isotropic, 
to have different elastic moduli and be bonded together rigidly on 0V. Within the framework 
of geometrically linear theory it is required to find the state of stress and strain of an 
inhomogeneous body V,= V, U V, subjected to certain external forces applied to the body V,. 

Let Fi be external mass forces acting on the body V, and pi surface forces given on a 
part of the boundary S, of the domain v,: 817, = s, u S,‘. The indices i, j, k,... take the 
values 1, 2, 3 and correspond to projections on the axes of a Cartesian z1 coordinate system. 
According to /l/, the solution of the problem in question should satisfy a system of elasticity 
theory equations and boundary conditions in the domains V, and V, and contact conditions on 
the surface Q = av. They have the form: 

in the domain V, 

.+j.+F’=o, 
*, 

,,ij = hJj (6kzekI, + q&j (1.1) 

ei j = (wi, j + !Dj, i)/2 T 
'"j'j IS, = ” * wi ‘27, = 5’ 

in the domain V, 

(1.2) 

eij = Cut, j + "j, i)/2, pi% j In_ = 0 

The contact conditions are expressed as follows: 

WiI*=UiI*7 (oijnj- p%j) lo = 0 (1.3) 

Here IDi, Ui are, respectively, the displacement vector components of points of the body 
in the domains V, and Vl> eij, #if are strain tensors, aij, piT are stress tensors, h,, pa are 
Lame elastic constants of the body Vo,hl,p~ are reinforcements of vl,nc are normal vectors 
to the appropriate surfaces S,,P and Q-. and Q_ is the interior facial surface of the 
reinforcement. The last conditions in (1.1) mean that displacements are given on the part S, 
of the boundary of the massive body. Kronecker deltas are denoted by 60 and a comma in the 
subscripts denotes the operation of partial differentiation. 

The problem formulated is among the class of so-called contact problems between thin- 
walled elements and massive deformable bodies. The thin-walled reinforcement should obviously 
be taken into account in the investigation of such problems. 

2. the transformed problem. Besides the original problem of the deformation of an 
inhomogeneous body V,U VI we consider the elasticity theory problem just for the domain V, 

(1.1) with a boundary condition on Q of the form 
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where 2 = + (p) is the equation of the surface 9,ni is the normal vector to &J and 5" 

are coordinates on the contact surface. The superscripts a,S,u,... take the values 1, 2 

and correspond to projections on the coordinate axes Ea. We denote the tensor of the second 

quadratic form of the surface P by bmB while the semicolon in the subscripts denotes 
the operation of covariant differentiation with respect to the connectedness on Q. The 

tensors Tat and M"B are related to the displacements of points of the boundary of the 
boundary of the massive body by the formulas 

The tensors ~~8 and Rae characterize the tension and bending of the contact surface 
n, and the parentheses in the subscript denote the tensor symmetrization operation: A fag) = 
(Aa + A@. The form of the boundary Conditions (2.1)-(2.4) allows of their physical inter- 

pretation as follows. AS already noted yap and Pap, are measures of the tension and bending 
of the surface 51, the function Q, is the density of the elastic reinforcement energy referred 
to unit area of the contact surface. Relationships (2.2) are analogous to the equations of 
state of two-dimensional shell theory and the boundary Conditions (2.1) to the equilibrium 
equations. These express the continuity of the stress in the initial contact problem on P. 

The solution of Problem (l.l), (2.1)-(2.4) is proposed for determining the state of stress 
and strain of the inhomogeneous elastic body VO u v1 instead of the contact Problem (l.l)- 
(1.3). 

The answer to the natural question of how much the solutions of these problems are dif- 
ferent and in what cases, yields the following fundamental assertion. 

Assertion. Let &a be a stress field that is the solution of the contact Problem (l.l)- 
(1.3), and let (I correspond to the Problem (l.l), (2.1)-(2.4) (here and henceforth let the 
bold-faced letters denote tensors of the second rank). Then the following inequality holds: 

Here C is a constant independent of h, CL, is the reinforcement shear modulus, sy is 
the scale of the tensile strain of the contact surface, ep is ‘the bending strain scale, and 
IV,1 is the volume of the domain Vt(t= 0,l). The operation sup is taken here and henceforth 
over the surface 9. The characteristic radius of curvature R of the surface P is determined 
by the,relationship l/R = sup (b,gbaB)% The characteristic scale of the change in deformation 
is introduced by the formula l=min(1,,2,), where I,,& are the best constants in the system 
of inequalities 

SUP l yap, y l d e,J, 9 SW h I pap, y I G epil, 

The norm L, of the second rank tensor D is assumed to be the following: 

II a UL(V,, = [s a ‘joijdr,~’ 

Vt 

where drt is a volume element of the domain lit. 
Inequality (2.5) determines the error in the solution of the transformation of the 

problem. If R>h and the solution of the transformation of the problem is such that hllei,, 
then in the norm L, it differs from the solution of the original contact problem by terms 
of the order of (hll f h/R)‘/* as compared with the main terms. In fact the above assertion is 
equivalent to the following: as h-0 the solution of the transformation of the problem in 
the norm L, tends to the solution of the original contact problem; the asymptotic equivalence 
of the solutions of these problems is thereby established. 

We will prove the above assertion. 

3. Error estimates. The error in the solution of the transformation of the problem is 
estimated successfully because of the following modification of the Prager-Synge /2/ identity. 
We give the displacement 

l&i Jo=oi (3.1) 
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on D in some manner and we examine two problems in addition to the original contact Problem 
(l.lf-(1.3): first is (1.1) and (3.1) and second is (1.2) and (3.1). We use the notation 

Sv., EVA, Sv,, respectively, for the additional energy in the original, first, and second 
problems 

where Eo-sijRl, EL-silt2 are elastic compliance tensors /3/, respectively, in the domains V, and 
V,. Then 

Here eo, I&o is the solution of the original contact problem, o,p is the statically 
allowable stress fields in the first and second problems, respectively, 0 is the kinematically 
allowable field in the original problem consistent with (3.1), and do is the area element 
of the surface Q. 

The difference between the identity (3.2) and the Prager-Synge identity is that ry' is 
not a statically allowable stress field in the original problem. It becomes such if the 
condition (@-&)nj= 0 is satisfied on p; then (3.2) is transformed into the Prager-Synge 
identity. 

Since S 0~) is a positive-definite quadratic form in the space of all possible states 
of stress of an elastic body, ElIa can be identified with the norm Lz. Then the stress 
field (o'+a)/Z can be considered as an approximation of the solution of the initial problem 
in the norm L, if the field K&P is constructed successfully so that the right side of 
(3.2) is small. 

Let us perform the procedure mentioned to estimate the error of the solution of the 
problem transformation. 

Let EDi*, qj*, ejj* be the solution of the transformed problem. We give the displacement 
on B in the form (3.1) where 'pi = wj*. We select the solution of the transformed problem - 
Ojj": OjiJ = Di, * Sij = Uij* in the domain V. as the statically and kinematically allowable stress 
fields in the first problem. Then the first component on the right side of inequality (3.2) 
vanishes. 

To construct the statically and kinematically allowable stress fields in Problem 2 we 
introduce a curvilinear coordinate system in the domain V, by means of the formulas 

Ji(EU,E) = ri(EE) + En'@) (3.3) 

By replacing the desired functions 

8 =(a ,,@ - pb,,@) P”% , sas = p”“x , x = I- 2gIf + ELK (3.4) 

in (1.2) the equilibrium equation can be transformed /2/ into the form 

The subscripts a,b, c,... take the values 1, 2, 3 and correspond to projections on the 
coordinate axes (p, E), Q, is the first quadratic form of the surface Q, H is the mean and K 

is its Gaussian curvature. As before, the comma in the subscripts denotes partial differen- 
tiation, the semicolon is the covariant differentiation relative to the connectedness in s2. 

Specifying sap in some manner, (3.5) can be considered as a system of ordinary dif- 
ferential equations in se, aps. The boundary condition-in (1.2) in terms of the substitution 
made for the desired functions has the form 

E=--h, ssa=o, z""=O (3.0) 
Let us take Pp in the form 

# =i: h-'(44T*ae + 6h-IM*aB)+ i2h-“(#“@ + ‘/&Z’*“@)E (3‘7) 

It is clear that a solution of Problem (3.5) and (3.6) for P $9 ~ exists. Writing it 
explicitly, it can be seen that the desired functions are quantities of the order of pie (Uj + 
h/R). For k=O i.e., on the contact surface Q, their value is obtained by integrating 
(3.5) with respect to F. between -h and 0. Since Conditions (3.6) are valid, we obtain 
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The last relationship is obtained by integrating the first equation in (3.5) multiplied 
by 5 with respect to g between -h and 0. This finally yields 

We will construct the kinematically allowable stress fields in Problem 2 by using the 
following representation of the displacement field of points of the domain v, 

u"(P, Q= rpi(~a)-S,v'ow"njtPta+hYi(la‘ff (3.9) 

This enables us to write the strain tensor components e,b in the curvilinear system 

of coordinates [ga,f) in the form 

The kinematically allowable displacement field iab is evaluated according to (3.10) in 
conformity with Hooke's law and (3.4). 

We take YE, Y in the form 

af,=% Y = -cy;t" fh-'a/l* (f?- h*/lZ) (3.11) 

Then s- and k*, as follows from (3.10), will be quantities of the order of pls(h/lf 
h/R). By virtue of (3.10) and the equations of state (2.2) and (2.3), an analogous deduction 
holds for the difference San -F=B. Therefore, the statically allowable field Fb (3.7) 
and the kinematically allowable field sob corresponding to (3.9) and (3.11) between which 
the point by point difference is a quantity of the order of p,e (h/Z f h/R) are constructed in 
the domain Y,. This enables us to write 

[Ev, (P - 031”’ < C’PZ I VI j”# VG f h/R) (3.12) 

It remains to compare the values of the statically allowale fields a and p on 8. Since, 
as follows from (3.4), 

if 
p n,nj=s& P 

ij 
"jr<@ = 'aa 

on 9 we obtain from (3.8) and the boundary Condition (2.1) for the transformed problem that 
(& _ YiJ) fil il 8. The third component on the right side Wf the identity (3.2) thereby vanishes. 
We therefore obtain 

lo"-(u' +6)/2U4(v.) <CcpleI vi I ‘%4 + Wf (3.13) 

The relationship 1 V, j’/s-hL-‘I Volvx holds, where L is the characterstic dimension of the 
cavity and L > R, L > 1. Then (2.5) follows trivially from (3.13). 

Renaarks. IQ. It was noted in Sect.1 that the problem considered is among the class of 
contact problems of massive deformable bodies with thin-walled elements. An extensive 
literature is devoted to it, whose bibliography is represented fairly completely in 13, 41. 
The idea of using the thin-walledness of the reinforcing elements in the plan for their 
approximate analysis by the theory of rods and shells is not new. It has repeatedly been 
applied in both problems of the theory of shells with stiffener ribs, with reinforced edges 
and holes, /5-71, say, and in problems on the contact of massive deformable bodies with 
thin-walled elements 13, 4, SE. General considerations on a variational approach to this 
problem are given in 191.. 

20. The central theme of this paper is to obtain error estimates of the solution of the 
transformed problem as compared with the original contact problem. It is important here to 
distinguish the error of the solution from the errors of the equations of the transformed 
problem themselves. The latter is defined as the relative magnitude of the discarded small 
terms in relationships (l.l)-(1.3) during passage over to Problem (l.l), (2.1)-(2.4). Namely, 
the errors of the equations are discussed in /31 when the level of the accuracy of the applied 
equations for thin coatings is discussed. 
was obtained* (*Misyura, V.A., 

The modification (3.2) of the Prager-Synge identity 
Effect of the loss of accuracy of classical shell theory. 

Candidate Dissert., Moscow State Univ., 1983.) in connection with giving a foundation for the 
fundamental hypotheses and relationships of two-dimensional shell theory. 

30. It can be verified that the transformed problem allows of a variational formulation. 
The Lagrange functional for it has the form 
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I(,‘, = f ud&, - f P,w”do - 1 Fimidro + s @do 

V* % V. R 

where U is the elastic energy density of the 'massive body, &, is the volume element of the 
domain Pg and do, do are the area elements of the surfaces S, and 0, respectively. This 
enables us to use the well-developed variational-difference method for a numerical investi- 
gation of a broad class of problems. 
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ON A METHOD OF INVESTIGATiNG FIBRE STABILITY IN AN ELASTIC SEMI-INFINITE 
MATRIX NEAR A FREE SURFACE* 

A.N. GUZ and YU.N. LAPUSTA 

The properties of an infinite characteristic determinant in the 
three-dimensional linearized problem /l/ of fibre stability in an 
elastic semi-infinite matrix near a free surface are investigated. AS 
in the case of two and a number of doubly-periodic systems of fibres in 
an infinite matrix /2-4/ it is proved that the mentioned determinant is 
a determinant of normal type. Non-linearly elastic transversely 
isotropic compressible materials are examined within the framework of 
the theory of finite subcritical deformations without taking account of 
the specific form of the elastic potential. The results elucidated hold 
even for different modifications of the theory of small subcritical 
deformations. Results of an analysis of kindred questions of the theory 
of elastic wave diffraction are used IS/. 

I. Ponnutation of the problem. The characteristic equation. We consider the stability 


